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It is commonly believed that visual short-term memory (VSTM)
consists of a fixed number of “slots” in which items can be stored.
An alternative theory in which memory resource is a continuous
quantity distributed over all items seems to be refuted by the ap-
pearance of guessing in human responses. Here, we introduce a
model in which resource is not only continuous but also variable
across items and trials, causing random fluctuations in encoding
precision. We tested this model against previous models using two
VSTM paradigms and two feature dimensions. Our model accu-
rately accounts for all aspects of the data, including apparent
guessing, and outperforms slot models in formal model compari-
son. At the neural level, variability in precision might correspond
to variability in neural population gain and doubly stochastic stim-
ulus representation. Our results suggest that VSTM resource is
continuous and variable rather than discrete and fixed and might
explain why subjective experience of VSTM is not all or none.

working memory | Bayesian inference | attention | estimation |
change localization

Thomas Chamberlin famously warned scientists against enter-
taining only a single hypothesis, for such a modus operandi

might lead to undue attachment and “a pressing of the facts to
make them fit the theory” (ref. 1, p. 840). For half a century, the
study of short-term memory limitations has been dominated by
a single hypothesis, namely that a fixed number of items can be
held in memory and any excess items are discarded (2–5). The
alternative notion that short-term memory resource is a contin-
uous quantity distributed over all items, with a lower amount per
item translating into lower encoding precision, has enjoyed
some success (6–8), but has been unable to account for the
finding that humans often seem to make a random guess when
asked to report the identity of one of a set of remembered items,
especially when many items are present (9). Specifically, if re-
source were evenly distributed across items (6, 10), observers
would never guess. Thus, at present, no viable continuous-re-
source model exists.
Here, we propose a more sophisticated continuous-resource

model, the variable-precision (VP) model, in which the amount
of resource an item receives, and thus its encoding precision,
varies randomly across items and trials and on average decreases
with set size. Resource might correspond to the gain of a neural
population pattern of activity encoding a memorized feature.
When gain is higher, a stimulus is encoded with higher precision
(11, 12). Variability in gain across items and trials is consistent
with observations of single-neuron firing rate variability (13–15)
and attentional fluctuations (16, 17).
We tested the VP model against three alternative models (Fig.

1). According to the classic item-limit (IL) model (4), a fixed
number of items is kept in memory, and memorized items are
recalled perfectly. In the equal-precision (EP) model (6, 10), a
continuous resource is evenly distributed across all items. The
slots-plus-averaging (SA) model (9) acknowledges the presence of
noise but combines it with the notion of discrete slots. Resource
consists of a few discrete chunks, each of which affords limited
precision to the encoding of an item. When there are fewer items

than chunks, an itemmight get encoded using multiple chunks and
thus with higher precision. To compare the four models, we used
two visual short-term memory (VSTM) paradigms, namely de-
layed estimation (7) and change localization, each of which we
applied to two feature dimensions, color and orientation (Fig. 2).
We found that the VP model outperforms the previous models
in each of the four experiments and accounts, at each set size, for
the frequency that observers appear to be guessing. Thus, the VP
model poses a serious challenge to models in which VSTM re-
source is assumed to be discrete and fixed.

Theory
VSTM Encoding and Variable Precision. An observer memorizes N
simultaneously presented stimuli. The task-relevant feature is
orientation or color, both of which are circular variables in our
experiments. Each stimulus is encoded with precision J, which
is formally defined as Fisher information (18). We assume that
the observer’s internal measurement of a stimulus is noisy and
follows a Von Mises (circular normal) distribution,

pðx j s; JÞ ¼ VM
�
x; s; κðJÞ�≡ 1

2πI0
�
κðJÞ� e

κðJÞcosðx− sÞ; [1]

where I0 is the modified Bessel function of the first kind of order
0 and the concentration parameter κ is uniquely determined by
J through J ¼ κ I1ðκÞ

I0ðκÞ (SI Text). For a variable with a Gaussian
distribution, J would be equal to inverse variance. A higher J
produces a narrower distribution p(x j s, J) (Fig. 3A). In the VP
model, J is variable across items and trials and we assume that it is
drawn, independently across items and trials, from a gamma
distribution with mean �J and scale parameter τ (Fig. 3A). The
measurement is then described by a doubly stochastic process,
ð�J; τÞ→ J→ x. We further assume that �J depends on set size, N, in
power-law fashion, �J ¼ �J1N−α (Fig. 3B). The free parameters �J1,
α, and τ are fitted to subject data.

Models for Delayed Estimation. In experiments 1 and 2, observers
estimated the value of a remembered stimulus (Fig. 2 A and B).
The stimulus estimate, denoted ŝ, is equal to the measurement, x.
In the IL model, the measurement of a remembered stimulus is
noiseless but only K items (the “capacity”) are remembered (or
all N when N ≤ K), producing a guessing rate of 1 − K/N for N >
K. In the SA model, K chunks of resource are allocated and the
estimate distribution has two components. When the tested item
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has no chunks, the observer guesses and the estimate distribution
is uniform; otherwise, it is a Von Mises distribution with κ de-
termined by the number of chunks. In the EP model, the esti-
mate distribution is Von Mises as in Eq. 1, but with precision
J equal across items and across trials with the same N and de-
pendent on N as J ¼ J1N−α. In the VP model, the estimate dis-
tribution is a mixture of many Von Mises distributions, each with
a different value of κ: pð̂s j sÞ ¼ R

VMð̂s; s; κðJÞÞpðJ j�J; τÞdJ (Fig.
S1A). In all models, we assume that the observer’s response is
equal to the estimate ŝ plus zero-mean Von Mises response noise
with concentration parameter κr. Model details can be found
in SI Text.

Models for Change Localization. In experiments 3 and 4, observers
sequentially viewed two displays, which were identical except
that one stimulus changed between them. Observers reported
where the change occurred (Fig. 2 C and D). The stimuli in
the first display and the magnitude of the change were all drawn
independently from a uniform distribution. In each model,
stimuli are encoded in the same way as in delayed estimation,
but the decision-making stage is different (Fig. 3C). We denote
the measurements of the stimuli in the first and second displays
by vectors x and y, respectively, and the corresponding con-
centration parameters by a vector κ. In the EP and VP models,
the observer has access to allN pairs of measurements, but in the
SA model only to K of them (or N when N ≤ K). The statistical
structure of the task-relevant variables is shown in Fig. S1C. In
all models with noisy encoding, the observer’s decision process is
modeled as Bayesian inference. The Bayesian decision rule is to
report the location L for which the posterior probability of
change occurrence is largest, which is equivalent to the quantity

I0ðκLÞ2
I0
�
κL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos ðxL − yLÞ

p � being largest (SI Text).

Psychophysics and Model Comparison
Experiment 1: Delayed Estimation of Color. To compare the models,
we first performed a delayed-estimation experiment (7). Observers
briefly viewed and memorized the colors of N discs (N = 1, . . . , 8)
and reported the color of a randomly chosen target disk by
scrolling through all possible colors (Fig. 2A). Following other
authors (9), we fitted to the observer’s estimation errors a mix-
ture of a Von Mises distribution and a uniform distribution (see
Fig. S2 for an example). We refer to the mixture proportion of
the Von Mises component as w and to its circular SD as CSD.
Note that this fitting procedure does not constitute a model, but is
simply a way of summarizing the data into two descriptive sta-
tistics. It would be premature to interpret w as the probability that
an item was encoded and 1 − w as the guessing rate, as suggested
in ref. 9, because such an interpretation is meaningful only if the
true error distribution is a uniform+Von Mises mixture, which
we argue here is not the case. We verified that observers did not
report colors of nontarget discs (Fig. S3; a different response
modality, namely clicking on a color wheel, did produce nontarget
reports). For each model, we generated synthetic datasets of the
same size as the subject datasets, using the maximum-likelihood
estimates of the parameters obtained from the subject data (Table
S1), and then fitted the uniform+Von Mises mixture to these
synthetic data. The resulting model predictions, averaged over
subjects, are shown in Fig. 4A (for individual-subject fits, see Fig.
S4). Consistent with previous results (9), we find a significant
main effect of set size on both w [one-way repeated-measures
ANOVA; F(7, 84) = 42.1, P < 0.001] and CSD [F(7, 84) = 4.60,
P < 0.001]. This result rules out both the EP model, which pre-
dicts w close to 1 at each set size (the slight deviation is an artifact
of the limited number of trials), and the IL model, which predicts
that CSD is constant. The SA and VP models explain the data
better, with the VP model having the lowest root mean-square
(RMS) error (Fig. 4A). In the SA model, capacity K equals 4.00 ±
0.34 (mean ± SEM), in line with earlier work (9). In the VP
model, the power α equals 1.33 ± 0.14 (Fig. S5A).
There is a clear intuition for why the VP model, but not the EP

model, accounts for the decrease of w with set size. Because of
trial-to-trial variability in precision, the target item sometimes, by
chance, receives so little resource that the estimate on that trial
is grouped into the uniform distribution, even though it was not
a “real” guess. When set size is larger, mean precision is lower,
resulting in more probability mass near zero precision (Fig. 3B)
and a higher apparent guessing rate. Thus, it is not necessary
to assume discrete resources to explain the decrease of w with
set size.
To further determine which model best describes the data,

we performed Bayesian model comparison (19), a principled
method that automatically corrects for the number of free
parameters (SI Text). We found that the log likelihood of the VP
model exceeds those of the IL, SA, and EP models by respectively
15.6 ± 3.1, 12.0 ± 3.1, and 40.3 ± 6.3 points (Fig. 5A). A log-
likelihood difference (or log Bayes factor) of 12.0 means that the
data are e12.0 times more probable under one model than under
another. At the level of individual subjects (Fig. S6A), we find that
the VP model is most likely for 12 of 13 subjects, whereas SA is
slightly better for one. Consistent results were obtained using the
Bayesian information criterion (20) (Fig. S6B).

Residual in Delayed Estimation. The VP model makes an intuitive
prediction distinct from the other models. So far, we have fitted
the data with a uniform+Von Mises mixture to obtain two de-
scriptive statistics, w and CSD. The VP model postulates vari-
ability in precision, causing its predicted error distribution to be
a mixture of a large number of Von Mises distributions, each
with a different J. Such a mixture cannot be fitted perfectly with
a uniform+Von Mises mixture and will therefore leave a residual.

N=2 N=5

IL

SA

EP

VP

Fig. 1. Resource allocation in models of VSTM. Each box represents an item.
Set size is 2 (Left) or 5 (Right). In this example, the number of “slots” or
“chunks” is 3 in the IL and SA models.
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Fig. 2. Trial procedures. (A) Experiment 1: delayed estimation of color.
Subjects scroll through all possible colors to report the remembered color in
the marked location. (B) Experiment 2: delayed estimation of orientation. (C)
Experiment 3: color change localization. (D) Experiment 4: orientation change
localization.
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Using the synthetic data described above, we find that the residual
predicted by the VP model, but not by other models, has a central
peak and negative side lobes (Fig. 5B). The subject data show a
residual of exactly this shape (Fig. 5C and Fig. S2). This result
constitutes additional evidence for variability in precision.

Experiment 2: Delayed Estimation of Orientation. To investigate the
generality of these results, we replicated the experiment using
orientation (Fig. 2B). The data show a significant main effect of
set size on both w [one-way repeated-measures ANOVA, F(7,
35) = 32.4, P < 0.001] and CSD [F(7, 35) = 3.28, P < 0.01] (Fig.
4B and Fig. S7), again ruling out the IL and EP models. The SA
and VP models explain the data better, with the VP model

having the lowest RMS error (Fig. 4B). In the SA model, ca-
pacity K = 3.33 ± 0.56. In the VP model, the power α = 1.41 ±
0.15 (Fig. S5A). Bayesian model comparison shows that the VP
model outperforms the IL, SA, and EP models by 103 ± 15, 52 ±
11, and 142 ± 30 log-likelihood points, respectively (Fig. 5D).
The VP model is most likely for all six subjects (Fig. S6C).
Results were confirmed using the Bayesian information criterion
(Fig. S6D). The residual after subtracting the uniform+Von
Mises mixture has the shape predicted by the VP model (Fig. 5 E
and F).

Experiments 3 and 4: Change Localization. To examine whether the
VP model can account for human behavior in other VSTM tasks,

A B C

Fig. 3. Theory. (A) (Upper) In the VP model, precision, J, is
variable and assumed to follow a gamma distribution (here
with τ = 1). (Lower) Von Mises noise distributions corre-
sponding to three values of precision and s = 0. (B) Example
probability distributions over precision at different set sizes
in the VP model. Here, mean precision (dashed lines) was
taken inversely proportional to set size (α = 1). In the EP
model, these distributions would be delta functions. (C) De-
cision process in the Bayesian model of change localization.
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Fig. 4. (A and B) Parameters w and CSD obtained from fitting a mixture of a uniform and a Von Mises distribution to the estimation errors in experiment 1
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we conducted two experiments in which subjects localized a
change in the color or orientation of a stimulus (Fig. 2 C and D).
Set size had a significant main effect on accuracy both for color
[one-way repeated-measures ANOVA, F(3, 18) = 256.6, P <
0.001] and for orientation [F(3, 30) = 356.5, P < 0.001] (Figs. S8A
and S9A). Magnitude of change has a significant effect on accu-
racy both for color [one-way repeated-measures ANOVA, F(8,
48) = 114.3, P < 0.001] and for orientation [F(8, 80) = 238.5, P <
0.001] (Fig. 6). Judged by RMS error, the VP model provides the
best fits to the psychometric curves (Fig. 6). Individual-subject fits
are shown in Figs. S8 and S9. In the SAmodel, capacityK=2.86±
0.14 for color and 4.09 ± 0.39 for orientation. In the VP model,
the power α = 0.974 ± 0.090 for color and 0.993 ± 0.075 for
orientation (Fig. S5B). In Bayesian model comparison, the VP
model outperforms the IL, SA, and EP models both for color (by
143 ± 11, 10.1 ± 2.6, and 15.0 ± 2.8 log-likelihood points) and for
orientation (by 145 ± 11, 11.9 ± 2.6, and 17.3 ± 2.8 points) (Fig.
7 A and C). In both experiments, the VP model outperforms all
other models for every individual subject (Fig. S10).

Apparent Guessing in Change Localization. To further distinguish
the models, we computed an apparent guessing rate analogous to

1 − w in delayed estimation. We did so by fitting, at each set size
separately, a Bayesian-observer model with equal, fixed precision
and a guessing rate to both the subject data and the model-
generated synthetic data. The EP model predicts an apparent
guessing rate of zero. We found that subjects’ apparent guessing
rate was significantly higher than zero at all set sizes [t(6) > 4.82,
P < 0.002 and t(10) > 4.64, P < 0.001 for experiments 3 and 4,
respectively] and increased with set size [F(3, 18) = 85.8, P <
0.001 and F(3, 30) = 26.6, P < 0.001, respectively]. The VP
model reproduces the increase of apparent guessing rate with set
size more accurately than the SA model (Fig. 7 B and D). Like
for delayed estimation, the apparent guessing rate predicted by
the VP model is nonzero because items are sometimes encoded
with very low precision, and this happens more frequently when
set size is large.

Discussion
Do Slots Exist? Our results suggest that VSTM limitations should
be conceptualized in terms of quality of encoding rather than
number of items. Earlier work proposing continuous-resource
models in the study of VSTM (6–8) did not model variability in
resource across items and trials. Here, we have shown that when
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such variability is not modeled, as in the EP model, human
responses in delayed estimation and change localization cannot
be accounted for. By contrast, the VP model accounts for all
presented data, including the existence of apparent guessing and
its increase with set size, which have so far been attributed to an
item limit. Thus, the VP model poses a serious challenge to the
notion of slots in VSTM and might reconcile an apparent ca-
pacity of about four items with the subjective sense that we
possess some memory of an entire scene: Items are never dis-
carded completely, but their encoding quality could by chance be
very low.
Most neuroimaging and EEG studies of VSTM limitations

consider only the slots framework (5, 21–24) (but see refs. 25 and
26). Without testing alternative models of VSTM, these studies
cannot provide evidence for the existence of slots. The VP model
offers a viable alternative, and we expect that quantities in the
VP model will also correlate with neural variables.
We do not expect the VP model to end the debate about the

nature of VSTM limitations. Variants of both the VP model and
previous models can be conceived and should be tested. Possible
hybrids between the SA and VP models include SA with trial-to-
trial variability in capacity K (27, 28) and VP augmented with an
item limit (continuous resource in discrete slots). We expect,
however, that any alternative model will have to explicitly model
variability in resource across items and trials to account for
the data.

Is Resource Discrete? The SA model asserts not only that VSTM
consists of slots, but also that resource comes in discrete chunks.
The latter notion is difficult to reconcile with the fact that sensory
noise is a graded rather than a discrete quantity. For example,
stimulus contrast affects sensory noise and therefore encoding
precision in a graded manner. Such continuous modulation is
inconsistent with the allocation of “fixed-size, prepackaged boxes”
(9) of resource, because those boxes allow for only a small, dis-
crete number of noise levels. The VP model does not have this
problem, because precision is a continuous quantity and is mod-
ulated by contrast in a continuous manner.

Neural Basis of VSTM Resource. Previous models have not specified
a neural correlate of VSTM resource. Here, we propose to
identify VSTMmemory resource with the gain (mean amplitude)
of the neural population pattern encoding a stimulus. Several
arguments support such an identification. First, for Poisson-
like populations, gain is proportional to encoding precision (29).
Moreover, the energy cost associated with high gain (30) could
explain why working memory is limited: As set size grows larger,
the energy cost gradually outweighs the benefit of encoding items
with high precision. Finally, gain in visual cortical areas is

modulated by attention (31–33), and attentional limitations are
closely related to working memory ones (8, 34).

Neural Basis of Variability in Precision. Although our results point
to variability in encoding precision as key in describing VSTM
limitations, the VP model does not specify the origin of this
variability. Variations in attention and alertness are likely
contributors, but stimulus-related precision differences [such
as cardinal orientations being encoded with higher precision
(35)] might also play a role. There is evidence that micro-
saccades are predictive of variability in precision during change
detection (36). Variability in precision provides a behavioral
counterpart to recent physiological findings of trial-to-trial and
item-to-item fluctuations in attentional gain (16, 17). A con-
sequence of gain variability is that the neural representation r
of a stimulus follows a doubly stochastic process ð�g; τÞ→ g→ r :
The spike count distribution is determined by gain g, which
itself is stochastic. Supporting this notion, doubly stochastic
processes can well describe spike counts in lateral intraparietal
cortex (LIP) (13), visual cortex (15), and other areas (14).
Thus, the VP model is broadly consistent with emerging
physiological findings.

Decrease of Mean Precision with Set Size. The VP model predicts
that mean precision decreases gradually with increasing set size
and, if encoding precision can be identified with neural gain, that
gain does as well. Extant physiological evidence is consistent with
this prediction. Neuronal responses in LIP, an area associated with
spatial attention, are lower to the onset of four than to that of two
choice targets (37). In the superior colliculus, an area associated
with covert attention, firing rates also decrease with the number
of choice targets (38). Similar measurements in areas encoding
short-term memories of visual stimuli remain to be made.
In both change localization experiments, we found that the

mean precision decreases with set size approximately as 1/N,
which would be predicted by models in which the total amount of
resource is, on average, independent of set size. However, in
both delayed-estimation experiments, we found a steeper de-
cline. This result shows that the decrease of mean precision with
set size is task-dependent and that the trial-averaged total
amount of resource might depend on set size. Perhaps the pre-
cise relation between mean precision and set size is set by
a trade-off between energy expenditure and performance. In
support of this speculation, a decrease of mean precision with set
size is also observed in an attentionally demanding task without
a memory component (39).

Neural Decoding. Nonhuman primate studies have begun to in-
vestigate set size effects in VSTM (36, 40–42). Advances in
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simultaneous recordings from large populations of single neu-
rons, as well as in the decoding of voxel patterns in functional
MRI, might soon allow for model comparison more powerful
than psychophysics allows. For instance, in delayed estimation,
one could conceivably obtain estimates x = (x1, . . . , xN) of the
stimuli s = (s1, . . . , sN) at all N locations simultaneously. The
predictions for p(x j s) made by the SA and VP models can then
be compared directly. Altogether, the VP model could help to
consolidate the perspectives of cognitive psychology and systems
neuroscience on VSTM limitations.

Methods
Detailed experimental methods can be found in SI Text. In experiment 1 (Fig.
2A), observers memorized the colors of N discs (N = 1, . . . , 8) and reported
the color of a randomly chosen target disk. Data of one subject were ex-
cluded, because her estimated value of w at set size 1 was extremely low
(w = 0.72, compared with w > 0.97 for every other subject). A trial sequence
consisted of the presentation of a fixation cross, the stimulus array, a delay
period, and a response screen. Subjects responded by scrolling through all
possible colors. Colors were drawn independently from a uniform distribution

on a color wheel. Fourteen subjects each completed 864 trials in the scrolling
condition. Experiment 2 (Fig. 2B) was identical except that stimuli were ori-
ented Gabors. Set size was 2, 4, 6, or 8. Six subjects each completed 2,560
trials. In experiment 3 (Fig. 2C), observers were presented briefly with two
displays containing N colored discs each (N = 2, 4, 6, or 8). The trial sequence
consisted of the presentation of a fixation cross, the first stimulus array,
a delay period, the second stimulus array, in which exactly one stimulus had
changed color, and a response screen. Subjects clicked on the location of the
stimulus that had changed. Colors in the first array and the magnitude of the
change were drawn independently from a uniform distribution on a color
wheel. Seven subjects each completed 1,920 trials. Experiment 4 (Fig. 2D) was
identical except that stimuli were oriented ellipses. Eleven subjects each
completed 1,920 trials.

Data Analysis. We used maximum-likelihood fitting and Bayesian model
comparison. We verified numerical robustness (Fig. S11). All methods are
discussed in SI Text.
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Convention: For convenience, we have mapped both orientation
and color space to [0, 2π) in all equations.

Fisher Information as Resource. In the item-limit (IL) model, an
item is encoded either perfectly or not at all. All other models we
tested contain a notion of noise. Therefore, we have to specify the
relationship between “amount of resource” and the level of noise.
Intuitively, resource is something that is allocated to an item

to improve the quality of its encoding. The traditional notion of
resource is that of a very large pool of available observations
made of the stimulus, also called samples (1, 2). Each observation
is corrupted by independent, zero-mean Gaussian noise with
the same SD, and the observer’s eventual measurement, x, is the
mean of these observations. Then the variance of the measure-
ment decreases inverse proportionally to the number of ob-
servations, and precision increases proportionally.
In this paper, we instead identify resource with Fisher infor-

mation, denoted J. Fisher information determines the best pos-
sible performance of any estimator, through the Cramér-Rao
bound (3). Fisher information is defined in terms of the noise
distribution, which is the distribution of the observations condi-
tioned on the stimulus s,

JðsÞ ¼ −
�
∂2

∂s2
log p

�
observations j s�

�
; [S1]

where 〈〉 denotes an expected value over p(observationsjs).
If x follows a Gaussian distribution with mean s and SD σ, it

is easily verified from the definition, Eq. S1, that Fisher infor-

mation is equal to the inverse variance, J ¼ 1
σ2
, recovering the

earlier relationship. This equation is an improvement over the
“number of observations” argument because J is defined on a
continuum and readily neurally interpretable. At the neural level,
Fisher information is proportional to the gain of a population
when neural variability is Poisson-like (4).
A slight complication arises from the fact that the stimulus

spaces we use (orientation and color) are circular, so that the
Gaussian distribution is no longer appropriate. Instead, we as-
sume that the measurement follows a Von Mises distribution:

pðx j sÞ ¼ 1
2πI0ðκÞ e

κ cosðx− sÞ ≡ VMðx; s; κÞ:

I0 is the modified Bessel function of the first kind of order zero
(5) and serves as a normalization. The concentration parameter
κ controls the width of the noise distribution. When it is large,
the Von Mises distribution resembles a Gaussian distribution
with variance 1/κ. When κ = 0, p(x js) is the uniform distribution.
It is important that the Gaussian distribution is a special case
of the Von Mises distribution, because the maximum-likelihood
estimate has an asymptotically Gaussian distribution.
We calculate Fisher information from its definition, Eq. S1,

J¼hκ cosðx− sÞi¼ κ

2πI0ðκÞ
Z

cosðx− sÞe κ cosðx− sÞdŝ ¼ κ
I1ðκÞ
I0ðκÞ;

[S2]

where I1(κ) is the modified Bessel function of the first kind of
order one (5). This equation relates Fisher information in a one-
to-one fashion to the concentration parameter of the Von Mises

distribution. We use it in all models except for the IL model. One
can think of Fisher information as precision, by analogy to the
Gaussian case. We write the inverse relationship of Eq. S2 as

κ ¼ ΦðJÞ: [S3]

The inverse function Φ is not analytical but can be computed
numerically.
Equal-precision model. In the equal-precision (EP) model, we
assume

J ¼ J1
Nα

; [S4]

where J1 is the Fisher information at set size 1. Using Eq. S3, the
concentration parameter at set size N is

κðNÞ ¼ Φ

�
J1
Nα

�
: [S5]

Slots-plus-averaging model. The slots-plus-averaging (SA) model
(6) is similar to the IL model, with the modification that whenN<
K, multiple chunks of resource can be assigned to a single item.
This modification gives it some characteristics of the EP model.
Specifically, the assumption is that the amount of resource is pro-
portional to the number of assigned chunks, S. Zhang andLuck (6)
do notmention the exact relationship between amount of resource
and the concentration parameter of the Von Mises distribution,
but we assume that they used the correct relationship, Eq. S2.
Then, the concentration parameter as a function of S is

κ ¼ ΦðSJ1Þ; [S6]

where J1 is now the Fisher information corresponding to having
one chunk (S = 1). When N > K, an item receives 0 chunks or 1
chunk, with probabilities K/N and 1 − K/N, respectively. This
allocation is the same as in the IL model. When N ≤ K, all items
receive at least one chunk and it is assumed that the chunks are
distributed as equally as possible over all items. For example, if
K= 4 and N= 3, two items get assigned one chunk each and one
item gets two chunks. From this, it follows that the number of
chunks an item receives, S, is equal to

S ¼

$
K
N

%

with probability 1−
K mod N

N
;

$
K
N

%

þ 1 with probability
K mod N

N
;

8
>>>><

>>>>:

where ⌊x⌋ denotes the largest integer smaller than x (floor
function). Using Eq. S6, these two values of S correspond to two
values of the concentration parameter κ, which we denote by κlow
and κhigh, respectively:

κlowðNÞ ¼ Φ

�$
K
N

%

J1

�
;

κhighðNÞ ¼ Φ

��$
K
N

%

þ 1
�
J1

�
:

[S7]

In the example above, two items would be memorized with con-
centration parameter κlow and the third one with κhigh.
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Variable-precision model. In the variable-precision model, precision
is variable across items and trials. We assume that each precision
is drawn independently from a gamma distribution with mean
precision �J and scale parameter τ,

pðg j �g; τÞ ¼ GammaðJ; �J; τÞ: [S8]

The variance of J is equal to �Jτ. The gamma distribution is
a common distribution on the positive real line. We assume that
mean precision depends on set size in the following way:

�J ¼
�J1
Nα

: [S9]

Model Predictions for Delayed Estimation. Item-limit model.The item-
limit model assumes that the memory of a stored item is perfect;
thus ŝ ¼ s. However, we allow for the possibility that response
noise (e.g., motor noise) corrupts the subject’s response. There-
fore, we assume that the response, denoted r, follows a VonMises
distribution centered on the true stimulus with concentration
parameter κr. For N ≤ K, we then have pðr j sÞ ¼ VMðr; s; κrÞ. If
N > K, there is a probability of K/N that the probed item was
memorized and a probability of 1 − K/N that it was not memo-
rized, in which case the subject will make a random guess. Hence,
the response distribution is a mixture of a Von Mises distribution
and a uniform (guessing) distribution:

pðr j sÞ ¼ K
N
VMðr; s; κrÞ þ

�
1−

K
N

�
1
2π

: [S10]

This model has two free parameters: K and κr.
Equal-precision model. In the presence of encoding noise, the best
estimate of the stimulus is equal to the measurement, ŝ ¼ x. The
estimate distribution predicted by the EP model is then

p
�
ŝ j s� ¼ VM

�
ŝ; s; κðNÞ�

with κðNÞ ¼ Φ
� J1
Nα

�
(Eq. S5). Including response noise with

concentration parameter κr, the response distribution is

pðr j sÞ ¼
Z2π

0

1
2πI0ðκðNÞÞ e

κðNÞcosð̂s− sÞ 1
2πI0ðκrÞ e

κr cosðr− ŝÞdŝ:

A lengthy but straightforward calculation gives

pðr j s;NÞ ¼
I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðNÞ2þ κ2r þ 2κðNÞκr cosðr− sÞ

q �

2πI0ðκrÞI0ðκðNÞÞ : [S11]

The EP model for the delayed-estimation task has three free
parameters: J1, α, and κr.
Slots-plus-averaging model.The estimate distribution is a mixture of
a Von Mises and a uniform distribution,

p
�
ŝ j s�¼ K

N
VM

�
ŝ; s; κ1

�þ
�
1−

K
N

�
1
2π

;

with κ1 = Φ(J1). With response noise, the response distribution
becomes

pðr j sÞ ¼ K
N

I0
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ21 þ κ2r þ 2κ1κr cosðr− sÞ
q 


2πI0ðκ1ÞI0ðκrÞ þ
�
1−

K
N

�
1
2π

:

[S12]

The estimate distribution for N ≤ K is a mixture of two Von
Mises distributions:

p
�
ŝ j s�¼ K modN

N
1

2πI0
�
κhighðNÞ� e

κhighðNÞcosð̂s− sÞ

þ
�
1−

K modN
N

�
1

2πI0
�
κlowðNÞ� e

κlowðNÞcosð̂s− sÞ:

With response noise, the response distribution for N ≤ K is

pðr j sÞ ¼ K modN
N

I0
�
κc;highðNÞ�

2πI0
�
κhighðNÞ�I0ðκrÞ

þ
�
1−

K modN
N

�
I0
�
κc;lowðNÞ�

2πI0
�
κlowðNÞ�I0ðκrÞ

; [S13]

with

κc;highðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κhighðNÞ2 þ κ2r þ 2κhighðNÞκr cosð̂s− sÞ

q
;

κc;lowðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κlowðNÞ2 þ κ2r þ 2κlowðNÞκr cosð̂s− sÞ

q
:

[S14]

The SA model for the delayed-estimation task has three free
parameters: K, J1, and κr.
Variable-precision model. The estimate distribution corresponding
to a fixed precision J is pð̂s j s; JÞ ¼ VMð̂s; s;ΦðJÞÞ. When precision
is variable, the estimate distribution is a mixture of the estimate
distributions associated with individual values of precision, with
mixture proportions equal to the frequencies of those values,
pðJ j�J; τÞ ¼ GammaðJ; �J; τÞ, with �J given by Eq. S9. Therefore,

p
�
ŝ j s; �J; τ� ¼ Rp�ŝ j s; J�pðJ j�J; τÞdJ

¼ RVM
�
ŝ; s;ΦðJÞ�GammaðJ; �J; τÞdJ; [S15]

This distribution is a mixture of an infinite set of Von Mises
distributions. We approximate the mixture by sampling 500 values
of J from the gamma distribution and averaging the Von Mises
distributions corresponding to these samples. We examined the
effect of the number of samples on the model predictions and
found that 500 is a sufficiently large number to give robust results
(Fig. S11A). Response noise is added as above, by convolving
pð̂s j s; �J; τÞ with a Von Mises distribution with concentration pa-
rameter κr. Thus, the variable-precision (VP) model for the de-
layed-estimation task has four free parameters: �J1, α, τ, and κr.

Model Predictions for Change Localization. In change localization,
the variables in the task are the location of the change, L, the
magnitude of the change, Δ, the vector of stimuli in the first
display, θ = (θ1, . . . , θN), and the vector of stimuli in the first
display, φ = (φ1, . . . , φN). Each L has a probability of 1/N. The

probability density of Δ is flat at
1
2π

, and the one over θ is flat at
�
1
2π

�N
. The relation between θ and φ is φ = θ + Δ1L, where 1L

is the vector of zeros with a 1 at the Lth entry.
Item-limit model.According to the item-limit model, the probability of
being correct is equal to 1− ε whenN≤K and to K

N þ �1− K
N

�
1

N −K ¼
Kþ1
N when N > K. These probabilities are independent of θ, φ, and
Δ. We introduced ε because without it (i.e., ε = 0), the data would
have probability zero under the model. The IL model for the
change localization task has two free parameters: K and ε.
Bayesian decision rule. All models except for the IL model have
noise in the measurements and probabilistic inference is needed
to estimate the location of the change. The ith measurement in the
first display, xi, is drawn independently from a Von Mises distribu-
tion with mean θi and concentration parameter κi. The ith mea-
surement in the second display, denoted yi, is drawn from a Von
Mises distributionwithmeanφi andconcentration parameter κi (it is
possible to allow κi to be different between the two displays but we
chose not to do so). The relations between the variables are shown
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in the graphical model in Fig. S1B. To model how the observer
decides on the basis of the measurements x= (x1, . . . , xN) and y=
(y1, . . . , yN), we use a Bayesian-observer model. The Bayesian ob-
server computes a probability distribution over the location of the
change, p(L j x, y), and then reports the location with the highest
probability. The posterior distribution over L is proportional to the
joint distribution, p(x, y,L), which in turn is evaluated as an integral
over the remaining variables, namely Δ, θ, and φ,

p
�
x; y;L

� ¼ RRR pðx; y; θ;φ;Δ;LÞdΔdθdφ
¼ RRR pðLÞ pðΔÞ pðθÞ pðφ jL; θÞ pðx j θÞ pðy jφÞdΔdθdφ;

where in going from the first to the second line we have used the
structure of the generative model in Fig. S1B. Substituting dis-
tributions and evaluating the integral over φ gives

p
�
x; y;L

� ¼ 1
N

�
1
2π

�Nþ1Z
∏
N

i¼1

�Z
pðxi j θiÞp

�
yi jφi ¼ θi þ ΔδL;i

�
�
dΔ;

[S16]

where δL,i = 1 when L = i and 0 otherwise. Because we are
interested only in the dependence on L, we can freely divide by
the L-independent product∏N

i¼1ð
R
pðxi j θiÞpðyi jφi ¼ θiÞ

�
, leaving

only integrals pertaining to the Lth location:

p
�
x; y;L

�
∝
RR

pðxL j θLÞ pðyi jφL¼ θL þ ΔÞdθLdΔR
pðxLj θLÞ pðyLjφL¼ θLÞ : [S17]

This probability evaluates to

pðx; y;LÞ∝ I0ðκLÞ2
I0
�
κL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðxL − yLÞ

p �:

Thus, the maximum a posteriori (MAP) estimate of the location
of the change is

L̂ ¼ argmax
L

I0ðκLÞ2
I0
�
κL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðxL − yLÞ

p �: [S18]

The distribution of the MAP estimate for given L, Δ, N, and κ,
denoted pðL̂ jL;Δ; κ;NÞ, depends on the model but is computed
through Monte Carlo simulation for all models (using 10,000
samples of x and y). Note that the estimate distribution is
characterized by a single number, namely probability correct.
Equal-precision model. In the equal-precision model, we take κi ¼
Φ
� J1
Nα

�
for all i. We assume equality between first and second

displays, because the concentration parameters in both displays
can essentially not be fitted independently (compare with the
sum of two normally distributed random variables: the variances
sum and cannot be estimated individually). The EP model for
the change localization task has two free parameters: J1 and α.
Slots-plus-averaging model. In the slots-plus-averaging model, κi
is given by Eq. S7. When N ≤ K, Eq. S18 applies. When N >
K, inference is based on only K of N measurements in each
display, x = (x1, . . . , xK) and y = (y1, . . . , yK), yet the change
could have occurred at any location. We first evaluate the joint
probability of x, y and that the change occurred at a location L

that is among the encoded ones. In analogy to Eq. S16, this
probability is

�
L encoded

�
p
�
x; y;L

� ¼ 1
N

�
1
2π

�Kþ1

3

Z
∏
K

i¼1

�Z
pðxi j θiÞ p

�
yi jφi ¼ θi þ ΔδL;i

�
�
dΔ:

[S19]

Now we evaluate the joint probability of x, y and that the change
occurred at a location L that is not among the encoded ones.
This probability is equal to

�
Lnot encoded

�
p
�
x; y;L

� ¼
ZZ

pðx; y; θ;φ;LÞdθdφ

¼
ZZ

pðLÞ pðθÞ pðφ jL; θÞ pðx j θÞ pðy jφÞdθdφ

¼ 1
N

�
1
2π

�K
∏
K

i¼1

�Z
pðxi j θiÞ pðyi jφi ¼ θiÞ

�
: [S20]

As one would expect, this probability does not depend on L.
Because we are interested only in the location L for which p(x, y,
L) is largest (i.e., the argmax), we divide both Eqs. S19 and S20
by Eq. S20. Then, in analogy to Eq. S17, we have to take the
argmax of

Evaluating the integral, the estimate of location is

L̂ ¼ argmax
L

I0ðκLÞ2
I0
�
κL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðxL − yLÞ

p � [S21]

when the value of this maximum exceeds 1, and we randomly
guess from among the nonencoded items when it does not. The
SA model for the change localization task has two free param-
eters: J1 and K.
Variable-precision model. In the variable-precision model, every Ji is
independently drawn from a gamma distribution with mean �J
(given by Eq. S9) and scale parameter τ. Then, the estimate
distribution is

p
�
L̂ jL;Δ; �J; τ� ¼

Z
···
Z

p
�
L̂ jL;Δ; J�

 

∏
N

i¼1
GammaðJi; �J; τÞ

!

dJ1···dJN :

This distribution is obtained through Monte Carlo simulation of
J, using 10,000 samples. The VP model for the change locali-
zation task has three free parameters: �J1, α, and τ.

Experimental Details. Experiment 1: Delayed estimation with color
stimuli. Observers briefly viewed and memorized a set of colors
and reported the color of a randomly chosen target disk (Fig. 2A).

Stimuli. Stimuli were displayed on a 21-inch cathode ray tube
monitor at a viewing distance of ∼60 cm. The stimulus array
consisted ofN colored discs (N= 1, . . . , 8) with a diameter of 2° of
visual angle, with their centers lying on an imaginary circle of ra-
dius 4.5°. The locations of the discs were randomly selected from

�
L encoded

� 1
2π

RR
pðxLj θLÞ pðyi jφL ¼ θL þ ΔÞdθLdΔR

pðxLj θLÞ pðyLjφL ¼ θLÞ ¼ 1
2π
R
pðxLj θLÞ pðyLjφL ¼ θLÞ

ðL not encodedÞ 1:

8
<

:
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eight fixed positions equally spaced along the circle, including the
positions corresponding to the cardinal directions with respect to
fixation. The colors of the discs were drawn independently from
180 color values uniformly distributed along a circle of radius 60 in
CIE 1976 (L*, a*, b*) color space. This circle had constant lu-
minance (L* = 70) and was centered at the point (a* = 10, b* =
10). The stimuli were presented on a midlevel gray background
(128 on an 8-bit grayscale) of luminosity 8.1 cd/m2.

Procedure. A trial sequence consisted of the presentation of a
fixation cross, the stimulus array, and a delay period during which
only the fixation cross was visible (Fig. 2A). Set size was chosen
pseudorandomly and the colors of the items were drawn inde-
pendently from a uniform distribution. The response screen
consisted of white circles marking the circumferences of the discs
in the stimulus array, with a thicker circle marking one randomly
chosen disk. The subject’s task was to report the color of the disk
that had been present in the stimulus array at the marked lo-
cation, by using the left and right arrow keys to scroll through
all possible colors. After the first key press, a random color ap-
peared within the thicker circle. After subsequent key presses,
this color changed by moving either clockwise or counterclock-
wise through the color wheel. The association between left/right
key presses and the direction in which the color wheel was tra-
versed was randomized on each trial. To submit a response, the
subject pressed the space bar.
The experiment consisted of three sessions on different days.

Each session consisted of two blocks in which subjects responded
using a color wheel condition (SI Text) and two blocks in which
they responded by scrolling. Color wheel and scrolling blocks
were interleaved in ABBA order, with A and B randomized for
each subject. After every 24 trials, feedback was given in the
form of a total score. The score per trial was 3 when the estimate
was within five color values of the true value and was P3 − E/15R
(floor function), with E the error, otherwise. The first two blocks
were each preceded by 8 practice trials. If the total score across
these trials was less than 3, subjects were asked to repeat the
practice. The actual block consisted of 144 trials. In total, each
subject completed 3·2·2·144 = 1,728 testing trials.
Fourteen subjects participated in this experiment (age range,

18–50 y; 12 naive). Data of one subject were excluded, because
her estimated value of w at set size 1 was extremely low (w =
0.72, compared with w > 0.97 for every other subject).
Experiment 2: Delayed estimation with orientation stimuli. Experiment 2
differed from experiment 1 in the following ways. Set size was 2, 4,
6, or 8. All stimuli were displayed on a 19-inch liquid crystal display
monitor at a viewing distance of ∼50 cm. The stimulus array was
composed of Gabors with a Gaussian envelope of 0.5° and a wave-
length randomly chosen from a uniform distribution on [0.3, 0.8]
cycles per degree (Fig. 2B). The Gabor centers lay on an imaginary
circle of radius 8.2°. Presentation time was 110 ms. A circle ap-
peared around the location of the item whose orientation had to be
reported. When subjects moved the mouse, a Gabor appeared in-
side that circle. They had to rotate it using the mouse to match the
orientation of the Gabor that had been in that location. They
pressed the space bar to submit their response. Feedback consisted
of an integer score between –3 and+3 on every trial. When E is the
error, the score was computed as 3 – E/15, rounded to the nearest
integer. Six subjects participated (four naive). Each subject com-
pleted four sessions of 640 trials each, for a total of 2,560 trials.
Experiment 3: Change localization with color stimuli. Observers briefly
viewed two screens containing a set of colors, separated in time
by a blank screen, and reported the location of the color change
(Fig. 2C).

Stimuli. All stimuli were displayed on a 19-inch LCD monitor
at a viewing distance of ∼60 cm. The first stimulus array was
composed of N colored discs (n= 2, 4, 6, or 8) with a diameter of
0.62° of visual angle with their centers lying on an imaginary
circle of radius 7° (Fig. 2C). The locations of the discs were

randomly selected from eight fixed positions equally spaced
along the circle, including the positions corresponding to the
cardinal directions with respect to fixation. The colors were
drawn independently from 180 color values uniformly distributed
along a circle of radius 60 in CIE 1976 (L*, a*, b*) color space.
This circle had constant luminance (L* = 58) and was centered
at the point (a* = 12, b* = 13). The stimuli were presented on
a midlevel gray background (128 on an 8-bit grayscale) of lu-
minosity 33.1 cd/m2.

Procedure. The trial sequence consisted of the presentation of
a fixation cross (1,000 ms), the stimulus array (110 ms), a delay
period during which only the fixation cross was visible (1,000 ms),
another stimulus array in which one of the stimuli changed color
(110 ms), and a response screen that consisted of empty circles at
the locations where the stimuli were shown. In the first stimulus
array, set size was chosen randomly and the color of each item was
chosen randomly as described above. In the second stimulus
array, N − 1 stimuli were identical to those in the first display,
and the color of the remaining stimulus was chosen randomly
from the same uniform distribution. The location of the changing
stimulus was chosen randomly. The subject’s task was to click on
the location of the stimulus that had changed color. The ex-
periment consisted of four sessions on different days. Each ses-
sion consisted of four blocks with 120 trials each. Hence, each
subject completed 4·4·120 = 1,920 trials in total. Seven subjects
participated in this experiment (age range, 21–32 y; five naive).
Experiment 4: Change localization with orientation stimuli. Experiment 4
differed from experiment 3 in the following ways. Stimuli were
white, oriented ellipses with minor andmajor axes of 0.41° and 0.94°
of visual angle, respectively, and a luminance of 95.7 cd/m2 (Fig.
2D). Eleven subjects participated (age range, 23–29 y; 9 naive).

Details of Data Analysis in Experiments 1 and 2. In experiments 1 and
2, to remove bias, we circularly subtracted, for each subject
separately, the circular mean across all trials from the subject’s
reports before any analyses.
Computing the summary statistics w and CSD. In delayed estimation,
the raw data consist of the distributions of the estimation error,
Δs, at each set size (Fig. S2). The summary statistics w and CSD
(Fig. 4) were obtained by fitting a mixture of a Von Mises dis-
tribution and a uniform distribution:

pfit
�
Δs;w; κfit

�¼ w
2πI0

�
κfit
� eκfit cosΔs þ 1−w

2π
: [S22]

The circular SD is defined as CSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
I1ðκfitÞ
I0ðκfitÞ

s

(7). We fitted

this mixture separately for each subject and each set size, both to
the data and to the error distributions predicted by each of the
models. Fitting was done through maximum-likelihood estima-
tion, which means choosing the values of the parameters of Eq.
S22, w and κfit, that maximize the probability of the data given
the parameters. This is equivalent to maximizing the log-likeli-
hood function

log L
�
w; κfit

� ¼ log p
�
data jw; κfit

� ¼ log ∏
Ntrials

i¼1
pfit
�
Δsi jw; κfit

�

¼
XNtrials

i¼1

log pfit
�
Δsi jw; κfit

�
;

where Ntrials is the number of trials. We use fminsearch in Matlab
to perform the maximization.
Nontarget reports in experiment 1. It has been argued that in the color
wheel condition, guessing is confounded with nontarget reports, in
the sense that the fitted uniform component includes a substantial
amount of reports of nontarget colors (8). To test for this, we

Van den Berg et al. www.pnas.org/cgi/content/short/1117465109 4 of 10



fitted two modified mixtures to the data. The first is the one that
assigns a probability to reporting the color of a nontarget disk (8),

pfit
�
ŝ j s;w; κfit

�¼ wguess

2π
þ wVM

�
ŝ; s; κfit

�

þ �1−w−wguess
� 1
N − 1

XN − 1

j¼1

VM
�
ŝ; sj; κfit

�
;

where ŝ is the reported value, s is the target value, sj is the jth
nontarget value, wguess is the guessing rate, and the sum runs over
all nontarget items. This model has one parameter more than
Eq. S22. The second modified mixture reflects the possibility that
the nontarget weight depends on the distance (along the circle)
between the target and the nontarget location,

pfit
�
ŝ j s;w; κfit

�¼ wguess

2π
þ 1−wguess

2πI0
�
κfit
�

PN

j¼1
wdje

κfit cosð̂s− sjÞ

PN

j¼1
wdj

;

where dj is the distance along the circle between the target and
the jth item in units of the minimum distance. It can take integer
values from 0 to 4, with 0 corresponding to the target. The
normalization of the weights in the second term is needed be-
cause items occupy different sets of locations on different trials,
but the overall distribution must always be normalized; there-
fore, the weights can only be relative. This mixture model has
a total of six free parameters.
We compared the original descriptive mixture fit, Eq. S22, to

its two variations. We applied the Bayesian information criterion
to correct for the number of free parameters. When log Lmax is
the maximum log likelihood of a model, the Bayesian informa-

tion criterion (9) is BIC ¼ log Lmax −
k
2
log Ntrials, where k is the

number of free parameters (two, three, or six) and Ntrials is the
number of trials.
Bayesian model comparison. Bayesian model comparison is a pow-
erful method to compare models, because it can use individual-
trial responses instead of summary statistics and because it au-
tomatically penalizes models with more free parameters (10). We
explain the method for delayed estimation; for change localiza-
tion, it is analogous. Each model m produces a predicted error
distribution pðΔs;m;N; tÞ, where t denotes the model param-
eters. Bayesian model comparison consists of calculating for
each model the probability of finding a subject’s actual responses
under this distribution, averaged over free parameters,

LðmÞ ¼ pðdata jmÞ¼
Z

pðdata jm; tÞ pðt jmÞdt

¼
Z �

∏
Ntrials

i¼1
pðΔsi;m;Ni; tÞ

�
pðt jmÞdt;

where Δsi and Ni are the estimation error and set size on the ith
trial, respectively. It is convenient to take the logarithm and
rewrite it as

log LðmÞ ¼ log LmaxðmÞ
þ log

Z
expðlog Lðm; tÞ− logLmaxðmÞÞ pðt jmÞdt;

[S23]

where log Lðm; tÞ ¼ PNtrials

i¼1
log pðΔsi; m; Ni; tÞ and LmaxðmÞ ¼

max
t

Lðm; tÞ: This form prevents numerical problems, because

the exponential in the integrand of Eq. S23 is now of order

1 near the maximum-likelihood value of t. For the prior, we
assume a uniform distribution across a plausible range (Table
S1), whose size we denote Sj for the jth parameter. Then Eq.
S23 becomes

log LðmÞ ¼ log LmaxðmÞ−
Xdim t

j¼1

log Sj

þ log
Z

expðlog Lðm; tÞ− log LmaxðmÞÞdt;

where dim t is the number of parameters. We approximated the
integral through a Riemann sum, with 25 bins in each parameter
dimension (we verified that this is a sufficiently large number
to give robust results, Fig. S11B). The ratio of likelihoods of
two models is also known as a Bayes factor. As an alternative to
Bayesian model comparison, the Bayesian information criterion

is BIC ¼ log Lmax −
dim t
2

log Ntrials.

Numerical robustness. Because the model predictions for the VP
models could not be computed analytically, we used Monte Carlo
simulations. To obtain the model predictions, we drew 250 samples
per combination of parameters, per stimulus. To verify whether
250 is a sufficiently high number, we checked how many samples
are approximately needed for the model likelihoods to converge.
The result shows that about 10 samples are needed (Fig. S11A).
Hence, 250 samples is a sufficiently high number for obtaining
reliable results.
For each model, we numerically approximated the integral

over parameter space in the Bayesian model comparison by a
Riemann sum. For all models, we discretized the parameter
dimensions into 25 bins (except for K in the IL and SA models,
because that parameter takes integer values only between 1 and
8). Results from running the analysis with different numbers of
bins shows that about 15 bins are needed for convergence (Fig.
S11B). Hence, 25 is a sufficiently high number of bins to obtain
reliable results.

SI Results
Raw Data.An example of the descriptive mixture fits (Methods) to
the histograms of estimation error of a single subject at all set
sizes is shown in Fig. S2.

Scrolling vs. Color Wheel. Two conditions were used in experiment
1: responding using a color wheel and responding using scrolling.
In the color wheel condition, subjects responded by a mouse click
on an annulus composed of all 180 colors that were used for the
stimulus array and centered at the center of the screen with a
radius of 8.2° and a width of 2.2° (Fig. S3A). The color wheel was
randomly rotated on each trial. In the scrolling condition, sub-
jects used the left and right arrow keys to scroll through all
possible colors. After the first key press, a random color ap-
peared within the thicker circle. We find that w declines with set
size, N, in both conditions (Fig. S3B). Using a two-way repeated-
measures ANOVA with factors set size (1–8) and response
modality (color wheel or scrolling), we find that w is significantly
different between response modalities [main effect of set size,
F(2, 24) = 64.3, P < 0.001; main effect of response modality,
F(1, 12) = 22.5, P < 0.001]. At all set sizes except 1 and 8, a
paired t test shows a significant difference between response
modalities (P < 0.01). Estimated capacities are 4.5 ± 0.3 and 3.5 ±
0.3 in scrolling and color wheel conditions, respectively, consti-
tuting a significant difference [two-tailed paired t test, t(12) =
−2.94, P < 0.05]. This result shows that the rate of (apparent)
guessing increases with set size but is substantially smaller in the
scrolling condition than in the color wheel condition.
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Nontarget Reports. We investigated whether there was evidence
for “nontarget responses” (i.e., responses in which subjects re-
ported the color of a nontarget item). We compared the
goodness-of-fit of the standard mixture model consisting of
a uniform and a Von Mises component centered at the color
value of the target with that of a model that also contained Von
Mises distributions centered at the nontarget items. We found

evidence for nontarget responses in the data from the color
wheel condition but not in the data from the scrolling condition
(Fig. S3C). Therefore, the scrolling condition was used for fur-
ther analysis.

Parameter Estimates. Maximum-likelihood estimates of the pa-
rameters in all models in all experiments are shown in Table S1.
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Fig. S1. (A) In the VP model, the error distribution in delayed estimation (green) is a mixture of a continuum of von Mises distributions with different J (color
bar colors). Whiter colors represent a higher proportion in the mixture, according to a gamma distribution. (B) By contrast, in the SA model (here with N = 5 and
K = 3), the error distribution (green) is a mixture of a uniform (red) and a Von Mises distribution (orange). (C) Generative model for the change localization
task. L, location of the change; Δ, magnitude of change; Δ, vector of change magnitudes at all locations; θ and φ, vectors of stimuli in the first and second
displays, respectively; x and y, vectors of measurements in the first and second displays, respectively.
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Fig. S2. Error distributions at all set sizes for subject 11 in experiment 1. Solid lines are the best fits of a mixture of a Von Mises and a uniform distribution.
Note the systematic discrepancy, which is predicted by the VP model (Fig. 5 B and E).
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Fig. S6. Model comparison for individual subjects in delayed estimation. (A) Experiment 1, Bayesian model comparison. (B) Experiment 1, Bayesian
information criterion. (C) Experiment 2, Bayesian model comparison. (D) Experiment 2, Bayesian information criterion.
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Fig. S8. Individual-subject fits of the SA and VP models in experiment 3 (solid line, VP; dashed line, SA; other models are not shown to avoid clutter). (A)
Proportion correct as a function of set size. (B) Proportion correct as a function of change magnitude at each set size.
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Fig. S9. Individual-subject fits of the SA and VP models in experiment 4 (solid line, VP; dashed line, SA; other models are not shown to avoid clutter). (A)
Proportion correct as a function of set size. (B) Proportion correct as a function of change magnitude at each set size.
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Fig. S10. Model comparison results for individual subjects in delayed estimation. (A) Experiment 3, Bayesian model comparison. (B) Experiment 3, Bayesian
information criterion. (C) Experiment 4, Bayesian model comparison. (D) Experiment 4, Bayesian information criterion.
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Table S1. Means and SEs of the maximum-likelihood estimates and tested ranges of model parameters
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Fig. S11. Robustness of numerical results. (A) Effect of the number of Monte Carlo samples used to compute the VP model predictions on the model log
likelihood in experiment 1. For each subject, we computed the model log likelihood for different numbers of samples and plotted it relative to the subject’s
model log likelihood when using 256 samples. Mean and 1 SEM are shown in red. (B) Effect of the number of bins used to approximate the integral over
parameter space in computing the model log likelihood of the SA and VP models. Here, 250 samples were used to compute the model predictions.
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